92 research outputs found

    Semiclassical approximation for a nonlinear oscillator with dissipation

    Full text link
    An SS--matrix approach is developed for the chaotic dynamics of a nonlinear oscillator with dissipation. The quantum--classical crossover is studied in the framework of the semiclassical expansion for the SS--matrix. Analytical expressions for the braking time and the SS--matrix are obtained

    Localization-delocalization transition on a separatrix system of nonlinear Schrodinger equation with disorder

    Full text link
    Localization-delocalization transition in a discrete Anderson nonlinear Schr\"odinger equation with disorder is shown to be a critical phenomenon - similar to a percolation transition on a disordered lattice, with the nonlinearity parameter thought as the control parameter. In vicinity of the critical point the spreading of the wave field is subdiffusive in the limit t+t\rightarrow+\infty. The second moment grows with time as a powerlaw tα\propto t^\alpha, with α\alpha exactly 1/3. This critical spreading finds its significance in some connection with the general problem of transport along separatrices of dynamical systems with many degrees of freedom and is mathematically related with a description in terms fractional derivative equations. Above the delocalization point, with the criticality effects stepping aside, we find that the transport is subdiffusive with α=2/5\alpha = 2/5 consistently with the results from previous investigations. A threshold for unlimited spreading is calculated exactly by mapping the transport problem on a Cayley tree.Comment: 6 pages, 1 figur

    Geometrical enhancement of the electric field: Application of fractional calculus in nanoplasmonics

    Full text link
    We developed an analytical approach, for a wave propagation in metal-dielectric nanostructures in the quasi-static limit. This consideration establishes a link between fractional geometry of the nanostructure and fractional integro-differentiation. The method is based on fractional calculus and permits to obtain analytical expressions for the electric field enhancement.Comment: Published in EP
    corecore